Each year, Clarivate™ identifies the world’s most influential researchers ─ the select few who have been most frequently cited by their peers over the last decade. In 2020, fewer than 6,200, or about 0.1%, of the world’s researchers, in 21 research fields and across multiple fields, have earned this exclusive distinction.


In collaboration with Prof. Makhsud Saidaminov from the University of Victoria we are starting a new NFRF project targeting the synthesis of new solution-processed semiconductors.

Our initial goal is to improve the stability of fully-inorganic Pb-based perovskites for applications in solar cells and X-ray detectors. The next milestone is discovering new Pb-free perovskite-like materials.

Welcoming a visiting PhD student, Pimsuda, who will lead this project!

Congratulations, Kamal!

ACS Materials Letters, 2020, just accepted manuscript.

The oxygen evolution capabilities of a manganese metal-organic framework (MOF) are demonstrated in acid (pH 1.3) for the first time. The MOF/carbon black composite significantly outperforms MnO2, a known non-noble acidic OER catalyst, exhibiting overpotentials of 539 mV and 764 mV (vs. 715 mV and 898 mV for MnO2) for a current density of 10 mA/cm2 and 50 mA/cm2 respectively.

Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis

In this work, we applied Bayesian optimization methods to facilitate the search in a multi-dimensional parameter space of quantum dot synthesis and achieved the optimal results in a smaller number of experimental trials compared to conventional methods (random search, grid search, or gradient descent).

We are proud to be named Highly Cited Researchers of 2018.

This award recognizes world-class researchers selected for their exceptional research performance, demonstrated by production of multiple highly cited papers that rank in the top 1% by citations for field and year in Web of Science.

For the 2018 Highly Cited Researchers analysis, the papers surveyed were published and cited during 2006-2016 and which then ranked in the top 1% by citations for their ESI field and year (the definition of a highly cited paper).

Here is our list:

Hybrid passivated colloidal quantum dot solidsAH Ip, SM Thon, S Hoogland, O Voznyy, D Zhitomirsky, R Debnath, …Nature nanotechnology 7 (9), 5779872012
Efficient and stable solution-processed planar perovskite solar cells via contact passivationH Tan, A Jain, O Voznyy, X Lan, FPG De Arquer, JZ Fan, …Science 355 (6326), 722-7267642017
Homogeneously dispersed multimetal oxygen-evolving catalystsB Zhang, X Zheng, O Voznyy, R Comin, M Bajdich, M García-Melchor, …Science 352 (6283), 333-3375722016
Perovskite energy funnels for efficient light-emitting diodesM Yuan, LN Quan, R Comin, G Walters, R Sabatini, O Voznyy, …Nature nanotechnology 11 (10), 8725692016
Perovskite–fullerene hybrid materials suppress hysteresis in planar diodesJ Xu, A Buin, AH Ip, W Li, O Voznyy, R Comin, M Yuan, S Jeon, Z Ning, …Nature communications 6, 70815102015
Ligand-stabilized reduced-dimensionality perovskitesLN Quan, M Yuan, R Comin, O Voznyy, EM Beauregard, S Hoogland, …Journal of the American Chemical Society 138 (8), 2649-26553702016
Air-stable n-type colloidal quantum dot solidsZ Ning, O Voznyy, J Pan, S Hoogland, V Adinolfi, J Xu, M Li, AR Kirmani, …Nature materials 13 (8), 8223702014
Enhanced electrocatalytic CO2 reduction via field-induced reagent concentrationM Liu, Y Pang, B Zhang, P De Luna, O Voznyy, J Xu, X Zheng, CT Dinh, …Nature 537 (7620), 3823562016
25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter‐Century of AdvancesJY Kim, O Voznyy, D Zhitomirsky, EH SargentAdvanced Materials 25 (36), 4986-50103522013
Materials processing routes to trap-free halide perovskitesA Buin, P Pietsch, J Xu, O Voznyy, AH Ip, R Comin, EH SargentNano letters 14 (11), 6281-62863252014
Highly Efficient Perovskite‐Quantum‐Dot Light‐Emitting Diodes by Surface EngineeringJ Pan, LN Quan, Y Zhao, W Peng, B Murali, SP Sarmah, M Yuan, …Advanced Materials 28 (39), 8718-87252492016
Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au (1 1 1)P Maksymovych, O Voznyy, DB Dougherty, DC Sorescu, JT Yates JrProgress in Surface Science 85 (5-8), 206-2402362010
Passivation using molecular halides increases quantum dot solar cell performanceX Lan, O Voznyy, A Kiani, FP García de Arquer, AS Abbas, GH Kim, M Liu, …Advanced Materials 28 (2), 299-3042182016
Efficient luminescence from perovskite quantum dot solidsY Kim, E Yassitepe, O Voznyy, R Comin, G Walters, X Gong, …ACS applied materials & interfaces 7 (45), 25007-250132182015
10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivationX Lan, O Voznyy, FP García de Arquer, M Liu, J Xu, AH Proppe, G Walters, …Nano letters 16 (7), 4630-46342102016
Quantum-dot-in-perovskite solidsZ Ning, X Gong, R Comin, G Walters, F Fan, O Voznyy, E Yassitepe, …Nature 523 (7560), 3242082015
Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solidsM Liu, O Voznyy, R Sabatini, FPG de Arquer, R Munir, AH Balawi, X Lan, …Nature materials 16 (2), 2582072017
All‐inorganic colloidal quantum dot photovoltaics employing solution‐phase halide passivationZ Ning, Y Ren, S Hoogland, O Voznyy, L Levina, P Stadler, X Lan, …Advanced Materials 24 (47), 6295-62991782012
N‐type colloidal‐quantum‐dot solids for photovoltaicsD Zhitomirsky, M Furukawa, J Tang, P Stadler, S Hoogland, O Voznyy, …Advanced materials 24 (46), 6181-61851732012
Engineering colloidal quantum dot solids within and beyond the mobility-invariant regimeD Zhitomirsky, O Voznyy, L Levina, S Hoogland, KW Kemp, AH Ip, …Nature communications 5, 38031712014